Deep Learning

Deep Learning

Python♪NumPyのa[[0], 0, 0:1]は何次元の配列になる?

NumPyの配列の要素はスライスやリスト(配列)を使って部分的に要素を抜き出せますが、抜き出した配列の次元がどうなるのか混乱しませんか?しかし、実は抜き出し後の配列の次元数は機械的に判断できます。最初に知っておくと頭に入りやすくなります。
Deep Learning

Python♪NumPyのa[i, j, k]とa[i][j][k]の違い

NumPy配列では要素を参照するときに、a[i, j, k]とa[i][j][k]という2つの表記法があります。「そうだっけ」と思った方はその違いを整理しておきましょう。計算速度、データへのアクセスの考え方が違いますので注意が必要です。
Deep Learning

Python♪ディープラーニングを高速化するバッチ処理とは

ディープラーニングではバッチ処理という方法が使えます。難しそうに聞こえますが、バッチ処理とは「データをまとめて計算する処理」のことです。そして、まとめて計算することで速くなります。具体例によりバッチ処理の概要を説明し、速度の比較を行います。
Deep Learning

Python♪関数で複数の値を返すタプルの便利な機能

「タプルはあまり使いどころがない?」と思っていませんか?でも、タプルを使うと複数の値を一度に渡すことができます。特に関数の返り値(return)での使用は必須レベル。「ゼロから作るDeep Learning」でも多用していたので記事にしました。